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(Sequencing) Data 

(Biological) Knowledge 

(Expression) Information 
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(Expression) Information 

Differentially Expression Calling 
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Clustering/Classifying 

Pathway 

•Functional assignment 

•Pathway Enrichment 

•Biological Processes 



(Figure Source: http://ocw.mit.edu/OcwWeb/Economics/14‐30Spring‐2006/CourseHome/index.htm) 



Databases 

 Preprocessed 

 Data 
 
 
Data Cleaning 
 
 

  Data Integration 

Task-relevant Data 

Data transformations 

Selection 

Data Mining 

(Modified from Srinivasan Parthasarathy, Ohio State Univ) 

(Drawing Hands, by M.C. Escher) 

Statistical Learning‐guided Mining 



(Prior) biological knowledge 
 

(Domain Knowledge) 

Data 

Model/Algorithm 
 
 
 
 
 
 
 
 
 

 Parameters 



(Modified from http://www.slideshare.net/mateongenaert/05‐mestdagh) 



A non‐coding RNA (ncRNA) is any RNA molecule that could  
 function without being translated into a protein.  
 
 
 
 
 

The DNA sequence from which a non‐coding RNA is transcribed as  
 the end product is often called an RNA gene or non‐coding RNA  
 gene. 



 Early discovered ncRNAs are mostly housekeeping 
 
 
 

•    “Assist” in translation in a necessary, but passive roles 

•    Constitutively expressed 

•    Include  

– 

– 

– 

– 

– 

– 

– 

rRNA 
tRNA 

snRNA 

snoRNA 

tmRNA 

telomerase RNA 

… 



• 

• 

• 

• 

 Recently discovered regulatory ncRNAs since 2000 
 
 
 

actively regulate gene transcription and translation 

are involved in various gene regulations through multiple mechanisms 

Many have specific expression patterns 

are widely encoded in the genome 
  –   The ENCODE (ENCyclopedia Of DNA Elements) pilot project suggested that  
   over 90% of the human genome may be represented in primary transcripts. 
  –   Over 95% of all transcripts are noncoding.  Some estimate the number of  
   ncRNAs to be ~30,000. 

(http://www.sciencemag.org/site/special/insights2010/) 



Representative Regulatory Mechanisms of ncRNAs 

Qi, Sci China ‘06 



microRNA (miRNA) 
• 
 
 

• 

single‐stranded RNAs of 21‐23 (or some say 20‐25) nt RNAs with regulatory  
functions when associated with a protein complex.  
In plants miRNAs can silence gene activity via destruction of homologous mRNA or  
blocking its translation. In animals, miRNAs inhibit translation by binding with  
imperfect homology to the 3’ untranslated region of mRNA. 

(Source: Cell 116:281) 



(Source: Nat Rev Cancer 6, 857) 



(http://www.pharmaprojects.com/therapy_analysis/microRNA-0808-therapeutictarget.html) 



Xist : Beyond “small” ncRNA 

polyA 

Splicing 

 Long  
transcript 



Xist – X inactive‐specific transcript 

(Brown et al., 1991) 

(Avner et al., 2001) 



   SCA8:  
  Long ncRNA in Human Disease 
 

•  SCA8 is mutated in one form of spinal  
 cerebella ataxia 

(Nemes, J. P. et al. 2000) 



  Long ncRNAs 
 
 

•    Estimated ~2000+ in human. 

•    Some, but not all, are mRNA‐like, with Poly(A) tails. 

•    Most have unknown function. Many may function via cis or trans  
 antisense pairing. 

– 

– 

– 

– 

Dosage compensation (e.g. XIST) 
Neuron development (e.g. SCA8) 

Genetic imprinting (e.g. IGF/H19) 

Post‐transcriptional regulation 

 •  mRNA degradation or stabilization 
–   Translational regulation 

–   Modulate protein function by directly binding to the protein 
 
   



How many non‐coding transcripts? 

What are the functional roles of those ncRNAs?  
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(Source: www.lkalop.com) 

Identification 

  (Source: www.lemondrop.com/2009/01/22/certain‐facial‐features‐found‐to‐create‐a‐feeling‐of‐trust/) 

 
 

 Features ~ property of an entity 
 
 



(Cell 116:281) 

Structural 
features 

(Nucl. Acids Res, 37(8):2419) 

Evolutionary 
features 

(Bioinformatics 27:i275) 



Sequence features only 
 
 
 

Mechanism neutral: works for both long and small ncRNAs 
 
 
 
 

Accurate and Fast 



SVM classifier 
 
 
 
  SVM – support vector machine 
 
 Separate transformed data with a hyper plane in a high‐dimensional space 

  Kernel function – Radial Basis Function(RBF) 
 
 

  Grid‐search to select proper values of parameter 
 
 
 
 
  



Feature 
Selection 

Sequence features 
Sequence  
Compositions 

(Predicted)  
Secondary  
Structure 

Sequence  
domains 

(Conceptually) 
Translational  
Product 

Homology 
CCTTCAGTTCTTAAAGCGCTGCAATT 
CGCTGCTGCAGCCATATTTCTTACTC 
TCTCGGGGCTGGAAGCTTCCTGACT 
GAAGATCTCTCTGCACTTGGGGTTC 
TTTCTAGAACATTTTCTAGTCCCCCA 
ACACCCTTTATGGCGTATTTCTTTAA 
AAAAATCACCTAAATTCCATAAAATA 
TTTTTTTAAATTCTATACTTTCTCCTA 
GTGTCTTCTTGACACGTCCTCCATAT 
TTTTTTAAAGAAAGTATTTGGAATAT 



( M. Dash and H. Liu 1997 ) 

 Feature Selection 
 
 

Purpose：Choose the best feature set in term of accuracy, speed, and computing space 



Find The Optimal Subset 

 ( Source: M. Dash and H. Liu 1997 ) 
 
 
 
 
 



       

          ...         

Original n features 
 
 
 
 
 
 
 
 
 Generate subsets 
 
 
 
 
 
 
 
  training 

evaluation and select  
 optimal solution  

Stop training, use  the  
 test set to test result 

Complete Search: 
Breadth First 
 
 
 
 

 The breadth‐first traversal of all variables 

 n! 

k!(nk)! 

n 
 

k 

1    2            n1    n 

n    n               n       n 
 
 
 
 
 
 
 



      empty set 
 
 
 
    Add the most  
  significant feature 
 
 
 
        training 
 
 
 
 
     evaluation 
 
 
 
   get the optimal  
       solution  
 
 
Stop training, use  the  
 test set to test result 

 The overall  
performance  
  increase? 

Heuristic Search: 
Sequential Forward Selection  
 
 
 

 Features added greedily until the  
 addition of further features does not  
 increase the overall performance. 



  Feature set 
 
 
 
 
Add or remove features  
 and get  subsets 

 training 
 
 
 
 
 
evaluation 

get the optimal solution  
 
 
 
 
 Stop training, use  the  
  test set to test result 

   not  
  reach  
   the  
 optimal  
solution 

 Continue  
  training  
    with  
   certain  
probability 

adding or removing features based on  
an “annealing‐like” probability 

Random Search: 
Simulated Annealing  



• 
 

• 
 

• 
 

• 

 Initialized feature set 
 
 
 

Properties of entity 
 

Speculate based on existed knowledge 
 

Certain statistic established by predecessors 
 

The data that is thought to be relevant 



 Sequence  
 Compositions 
 
 
 
e.g. frequency of  

k‐mer 

 Sequence  
 domains 
 
 
 
e.g. known  
binding motif 

 (Predicted)  
 Secondary  
 Structure 
 
 
e.g. folding  
energy (MFE) 

 (Conceptually) 
 Translational  
 Product 
 
 
e.g. ORF length 

 Homologous 
 
 
 
 
e.g. # of BLASTX  
hits 

60+  
features 

Fine‐tune with Breadth  
 First Searching 

   11 features 
 
 
 
 
 
 
 
 
 
  Coverage 
 
 
 

 ORF Integrity 
 
 
 

LOG‐ODD score 

  Sequential  
Forward Selection  
 
 
 
 
 
 # of BLASTX hits 
 
 
 

    Hit Score 
 
 
 

   Frame Score 



Coverage 

 ORF Integrity 
 
 
 
 
 
 
 
 

LOG‐ODD score 

LORF (Lmismatch 2 *Lframeshift) 
 
 Total Length 

Coverage(S)  

indicates whether the predicted ORF begins with a  
start codon and ends with an in‐frame stop codon 
 
 
 
 
 
 
 
indicator of the quality of a predicted  
ORF.  The higher the score, the better  

(Conceptually) Translated Product 

log 
Pr(D |M) 

 Pr(D |R) (Nucleic Acids Res. 35:W345) 
the quality of the ORF 
 
  



 # of BLASTX hits 
 
 
 
 
 
 
 
 
 
   Hit Score 
 
 
 
 
 
 
 
 

  Frame Score 
 
 
 
 
 
 
 
 
 
(Nucleic Acids Res. 35:W345) 

Homologous 
 

  A true protein‐coding transcript is likely to have  

  more hits with known proteins than a non‐coding  
  transcript does 
 
 
 
 
 For a true protein‐coding transcript, the hits are also  
 likely to have higher quality 
 
 
 
 
 For a true protein‐coding transcript, most of the hits  
 are likely to reside within one frame, whereas for a  
 true non‐coding transcript, even if it matches certain  
 known protein sequence segments by chance, these  
 chance hits are likely to scatter in any of the three  
 frames 
 
 
 



  Coverage 
 
 
 

 ORF Integrity 
 
 
 

LOG‐ODD score 

# of BLASTX hits 
 
 
 

  Hit Score 
 
 
 

 Frame Score 

http://cpc.cbi.pku.edu.cn 



(Nucleic Acids Res. 35:W345) 

http://cpc.cbi.pku.edu.cn 



Gene 

Regulation 

FunctionofncRNA HVanBakeletal.PLoSBiology,2010 

LongncRNA 

HJiaetal.,RNA,2010 

TGBelardetal.,Neuron,2011 

IUlitskyetal.Cell,2011 

RSYoungetal.GenomeBiolEvol,2012 

ShortPeptide XYangetal.,GenomeRes,2011 

StemCell Self-Renewal JSMohamedetal.,RNA,2010 

Neurondevelopment SYNgetal.,EMBOJournal,2011 

32 million  

Disease 

Heartdiseases JHLeeetal.,CircRes,2011 

from 50000+  

CancerMarker BPMelloetal.,NucleicAcidRes,2009 

around the  

Tumormechanism 
ACTahiraetal.,MolecularCancer,2011 

RJFlockhartetal.,GenomeRes,2012 

Evolution 

Newgenes 
DRoseetal.,JBioinformComptBio.,2008 

JFSousaetal.,PLoSOne,2010 

Functiondivergence 

ofduplicatedgenes 
JTWangetal.,BMCGenomics,2012 

http://cpc.cbi.pku.edu.cn 

sequences  
  users  
 world  
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How many non‐coding transcripts? 

What are the functional roles of those ncRNAs?  

 Additional  
Information 



microRNA (miRNA) 
• 
 
 

• 

single‐stranded RNAs of 21‐23 (or some say 20‐25) bp RNAs with regulatory  
functions when associated with a protein complex.  
In plants miRNAs can silence gene activity via destruction of homologous mRNA or  
blocking its translation. In animals, miRNAs inhibit translation by binding with  
imperfect homology to the 3’ untranslated region of mRNA. 

(Source: Methods Enzymol. 427:65) 
 
 
 (Source: Cell 116:281) 



(Modified from public.ornl.gov/site/gallery/highres/REGNET.jpg) 



•  Differentially expressed genes 
 
 
 

•  Co‐expressed genes 



Data Mining: Differentially Expression Calling 

•   Identify the genes with biological‐significant difference in  
expression levels across samples 

•   Differences in expression values can result from many  
non‐biological sources (e.g. experiment error/bias) 

–  The ‘real’ differences are the differences that can NOT be  
explained by the various errors introduced during the  
experimental phase 



(Source: apollo.lsc.vsc.edu/classes/remote/lecture_notes/measurements/bias_random_errors.html) 

•    Random errors arise from random fluctuations in the  
measurements 

•    It could be reduced by repeating experiment many times  
(and get a mean value) 

•    Random errors could be modeled statistically by variance. 



20 25 18 24 

Condition 1 

118 128 119 125 

 Distribution of 
differential expression statistic 

Condition 2 

Distribution of expression  
index for gene g , condition 1 

Distribution of expression  
index for gene g , condition 2 



 Condition 2 
 
 
 
Expression of gene g 

d 

Condition 1 
 
 
 
 
 
 
  



 Condition 2 
 
 
 
Expression of gene g 

d 

Condition 1 
 
 
 
 
 
 
 
  



Statistical calling 
 Additional  
Information 

1.    Select a statistic which takes the variance into account, and  
 will rank the genes in order of supporting strength for  
 “differential expression”. 
 
 
 
 

2.    Derive the p‐value for each gene, based on the NULL  
 distribution of the statistic. 
 
 
 
 

3.    Choose a critical‐value for the gene with p‐value less than  
 which being called as “being statistically significant”. 
 
 
 
 
   



Source: projectile.sv.cmu.edu/research/public/talks/t‐test.htm 
Source:  
www.socialresearchmethods.net/kb/stat_t.htm 

• 
 
 
 
 
 
 

• 

 Additional  
Information 

The t-test assesses whether the means of two groups are statistically 

different from each other 
 
 •     Take the variance into account through Standard Error (SE) 
 
Need to estimate the SE correctly 
 
 •     But the correct estimation depends on prior distribution (Normal) 

  as well as the number of replicates (>10) 
 
 
 
 
    



Model the data in RNA‐Seq 

Patcher 2011, arXiv:1104.3889 [q‐bio.GN] (Genome Biology 14:R95) 



(Genome Biology 14:R95) 



•    Type I Error (False Positive): rejecting the null hypothesis when it is true 
•    Type II Error (False Negative): accepting the null hypothesis when it is false 



Statistic 

beta 
Sample 2 

d 

cut‐off 

alpha 
Sample 1 



Multiple Testing Issue 

•   If more than one test is made, then the collective FP  
value is greater than in the single‐test 
– That is, overall Type I error increases 

•   E.g: you checked your RNA‐Seq data and found 20  
 significantly different genes with a 0.05 threshold on  
 each gene, then what is the chance that you making  
 at least one error in overall? 



• 
 

• 
 

• 
 

• 

Pr(making a mistake) = 0.05 
 

Pr(not making a mistake) = 1 – 0.05 = 0.95 
 

Pr(not making any mistake) = 0.9520 = 0.358 
 

Pr(making at least one mistake) = 1 ‐ 0.358 = 0.642 

 There is a 64.2% chance of making at  
 least one mistake 
 

   Multiple Testing Issue 
 
 
 
   



   Bonferroni Correction 
 
 
 

•   Most straightforward and plain 
 
 
 
•   For n hypothesis tests, only call p‐values less than α/n as “being  
 significant”. 
  •   Or, adjust the raw p‐value as min(n*p, 1) 
 
 
 
•   For example, if we want to have an experiment wide Type I error  
 rate of 0.05 when we comparing 30000 genes, we’d need p‐values  
 less than 0.05/30000 = 1.67 x 10‐6 so that the gene(s) could be  
 called as “being significant” 



#not 
rejected 

#rejected totals 

#trueH U V 
(False 

Positive) 

m0 

#non-true 
H 

T 
(False 

Negative) 

S m1 

totals m-R R m 

Type I (false positive) error rates 

FPR = E(V/m0) 

• 
 
 
 
 
• 
 
 
 
 
• 
 
 
 
• 
 
 
 
• 

 Additional  
Information 

Family‐wise Error Rate 

  FWER = p(V ≥ 1) 

Per‐family Error Rate 

  PFER = E(V) 

Per‐comparison Error Rate 
  PCER = E(V)/m 

False Discovery Rate 
  FDR = E(V/R) 

False Positive Rate 
 
 Proportion of false positives among the  
 genes that are flagged as differentially  
 expressed. 
 
    



q‐value 
 Additional  
Information 

•   q‐value is an measure of False Discovery Rate (FDR) 
  –  Proposed by Storey et al. in 2002 and tuned for microarray  
   analysis 
 
 
 

•   The q‐value for a particular gene g is the expected  
 proportion of false positives incurred when calling that  
 gene g “significant”. 
 
 
 

•   In contrast, the p‐value for a particular gene g is the  
 probability that a randomly generated expression profile 
 would be as or more extremely differentially expressed. 
 
 
     



•  Differentially expressed genes 
 
 
 

•  Co‐expressed genes 
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Clustering: Group cases (genes/samples) with similar expression  
pattern/levels (Unsupervised learning) 
 –  Hierarchical Cluster, k‐mean Cluster, Self‐Organizing Maps (SOM), etc 

1 2 3 4 5 6 1 2 3 4 5 6 

1 2 3 4 5 6 1 2 3 4 5 6 



(Nature Genetics 42:1113) 



s(x1,x2)     (x    x   ) 

 (x 

 (x  (x  x1)                  x2)2 1k                                        2k 

s(x1,x2)  

1k  x1)(x2k  x2) 
 
 
 
 2 

   K 
 
 
  k1 

 K                                         K 
 
 
k1                                    k1 

Distance measurement: how “similar” between two genes’  
profile 

Pearson distance 
(Correlation distance) 

Euclidean distance 
(Absolution distance) 

 2                 2 

1k               2k 



Pearson Distance: 
 

• red‐blue: .006 
 

• red‐gray: .768 
 

• blue‐gray: .7101 

Eucl. Distance: 
 

• red‐blue: 9.45 
 

• red‐gray: 10.26 
 

• blue‐gray: 3.29 
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Find The Optimal Subset 

The way to find the  optimal  subset ( M. Dash and H. Liu 1997 ) 
 



• 
 
 
 
 
 
 
• 
 
 
 
 
 
 
• 

 Introduction Of Heuristic Search 
 
 
SFS , Sequential Forward Selection  
Set of variables starts from an empty set, each time we select a variable to  
join the subset and the optimal solution in the evaluation is selected. Each  
time select a optimal variable to join, a simple greedy algorithm. 
SBS , Sequential Backward Selection  
Set of variables starts from an set which has all variables ,each time we   
remove a variable from the subset and the optimal solution in the  
evaluation is selected. 
BDS , Bidirectional Search  
Using a sequence forward selection (SFS) starts from the empty set, while  
using the sequence backward selection (SBS) to start the search from the  
universal set, when the two are the same, stop the search. 
 
 
 
 
   



Introduction Of Heuristic Search 
•    LRS , Plus‐L Minus‐R Selection  

Starts from the empty set, each time join L variables, and then  
remove R variables, the optimal solution in the evaluation is  
selected.( L > R ) 
Starts from the universal set, each time remove R variables, and  
then join L variables, the optimal solution in the evaluation is  
selected. ( L < R ) 

•    Sequential Floating Selection  
Sequential Floating Selection is from the Plus‐L Minus‐R Selection ,  
the differs is : the L and R is not fixed ,it will changing. 



     Empty set 
 
 
  Add a variable and  

    get  subsets 
 
 
      Training 

 
 
 
     Evaluation 

 
 
   Get the optimal  

      solution  
 
 
Stop training, use  the  
 test set to test result 

 not reach  
the optimal  
  solution 

 SFS 
 
 
 

Set of variables starts from an empty  
set, each time we select a variable to  
join the subset and the optimal  
solution in the evaluation is selected.  
Each time select a optimal variable to  
join, a simple greedy algorithm. 



A variable set with m  
      variables 
 
 
  Remove a variable  
   and get  subsets 
 
 
 
       Training 
 
 
 
 
     Evaluation 
 
 
 
    Get the optimal  
       solution  
 
 
 top training, use  the  
test set to test result 

 not reach  
the optimal  
  solution 

 SBS 
 
 
 

Set of variables starts from an set  
which has all variables ,each time we   
remove a variable from the subset  
and the optimal solution in the  
evaluation is selected. 



negative accuracy total  accuracy 



negative accuracy total accuracy 



negative accuracy total accuracy 



What is clustering 

•  Cluster analysis or clustering is the task of  
 grouping a set of objects in such a way that  
 objects in the same group (called a cluster) are  
 more similar (in some sense or another) to  
 each other than to those in other groups  
 (clusters).  

‐‐from wikipedia 



Distance 
•   Manhattan distance  1 ∑ | | 

•   Euclidean distance 2 ∑   

•   Minkowski distance  ∑   
/ 

•   Chebyshev distance  ∞ max | | 

•   Mahalanobis distance  

•   Lance and Williams distance  ∑ 
| | 



• 

• 

• 

• 

 Change to distance 
 
 
Using R 
dist(x, method =“euclidean”, diag = FALSE, upper = FALSE, p=2) 
x a numeric matrix, data frame or "dist" object.  
method the distance measure to be used. This must be one of  
"euclidean", "maximum", "manhattan", "canberra", "binary" or  
"minkowski". Any unambiguous substring can be given. 

•   diag logical value indicating whether the diagonal of the distance  
 matrix should be printed by print.dist. 
•   upper logical value indicating whether the upper triangle of the  
 distance matrix should be printed by print.dist. 
•   p The power of the Minkowski distance. 



Hierarchical clustering method 
•   Single linkage method  min , 

m , •   Complete linkage method  
 

•   Median method  
 

•   Average linkage method  
 

•   Centroid method  

•   Ward method   =     



hclust 

•  hclust(d, method = "complete", members = NULL) 
 

•  d a dissimilarity structure as produced by dist. 

•  method the agglomeration method to be used. This  
 should be (an unambiguous abbreviation of) one of  
 "ward", "single", "complete", "average", "mcquitty",  
 "median" or "centroid". 
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Background 

•   High-throughput sequencing technology is 

 rapidly becoming the standard method for 

 measuring RNA expression levels (aka RNA- 

 seq). 

•   One of the main goals of these experiments is to 

 identify the differentially expressed genes in two 
 or more conditions. 



 Differential gene expression analysis 
 
 
 
 
 

• 3 steps: 
 

• 1. Normalization of counts 
 

• 2. parameter estimation of the  
  statistical model 
 

• 3. Test for differential gene  
  expression 



Goal : Comparison of different analysis  

methods for RNA‐seq data from different  
perspectives. 

Such as, Cuffdiff, edgeR, DESeq, PoissonSeq,  
baySeq, and limma. 



Datasets for Research 

They used two benchmark datasets: 

1 The first is the Sequencing Quality Control 

 (SEQC) dataset, which includes replicated 

 samples of the human whole body reference 

 RNA and human brain reference RNA along with 

 RNA spike-in controls. 

2 The second dataset is RNA-seq data from 

 biological replicates of three cell lines that were 

 characterized as part of the ENCODE project. 



The measures of their analysis 

•   The analysis in this paper focused on a number of 

 measures that are most relevant for detection of 

 differential gene expression from RNA-seq data 

•   i) normalization of count data; 

•   ii) sensitivity and specificity of DE detection; 

•   iii) performance on the subset of genes that are 

 expressed in one condition but have no detectable 

 expression in the other condition; 

•   iv) the effects of reduced sequencing depth and number 

 of replicates on the detection of differential expression. 



Normalized counts by log expression  
correlation 



Differential expression analysis 





Null model evaluation of type I error 



Impact of sequencing depth and number  
 of replicate samples on DE analysis 





Conclusion 

1 In most benchmarks Cuffdiff performed less 

favorably 

with a higher number of false positives 

without any increase in sensitivity. 

2 Our results conclusively demonstrate that the 

addition of replicate samples provides 

substantially greater detection power of DE than 

increased sequence depth. 

•   Hence, including more replicate samples in 

 RNA-seq experiments is always to be preferred 

 over increasing the number of sequenced reads. 



Bioinformatics: Introduction and Methods 
  

Computer Science Department, Southwest University 

Thank you  


